Exploring the effectiveness of different Lewis pair combinations in caged structures for the catalysis of ammonia borane dehydrogenation: a DFT study.

نویسندگان

  • Amrita Pal
  • Kumar Vanka
چکیده

Zero dimensional cage structures containing four phenyl rings separated by imine linkers have recently been synthesized. In the current work, through a computational investigation using density functional theory (DFT), we demonstrate that modifying such cages by replacing the 2, 4, 6 carbon atoms in the phenyl rings to yield new rings, as well as replacing the imine moiety in the linker by other electronegative atoms, can yield interesting new cages that can be reactive in catalysing reactions such as the dehydrogenation of ammonia borane - an important reaction in hydrogen storage research. Specifically, it is predicted that phosphorus-nitrogen pairs (phosphorus in the 2, 4, 6 positions in the ring, nitrogen in the linker position), germanium-nitrogen and germanium-phosphorus pair combinations would lead to effective Lewis pairs that can work in tandem to dehydrogenate ammonia borane efficiently under room temperature conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DFT investigation of the potential of porous cages for the catalysis of ammonia borane dehydrogenation.

Full DFT based quantum mechanical studies reveal that zero dimensional porous structures, especially the newly proposed phosphorus incorporated organic cages, can be excellent catalysts for the dehydrogenation of ammonia borane.

متن کامل

Exploring Promising Catalysts for Chemical Hydrogen Storage in Ammonia Borane: A Density Functional Theory Study

Density functional theory (DFT) has been applied to study potential ammonia borane (AB) dehydrogenation pathways via new bifunctional ruthenium-based catalysts, alongside their computationally-designed iron-based counterparts (i.e., four catalysts), using the wB97XD (dispersion-included) functional. The efficiency of each catalyst was under scrutiny based on the addition of ammonia borane, with...

متن کامل

One-pot tandem catalysis over Pd@MIL-101: boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation.

The hydrogenation efficiency of nitro compounds was found to be greatly boosted by coupling with dehydrogenation of ammonia borane. The Pd@MIL-101 with tiny Pd NPs is exceptionally efficient and recyclable in the tandem reactions and diverse nitro compounds can be selectively reduced to the corresponding amines in 1.5-5 min with quantitative yields.

متن کامل

A non-dissociative open-flask hydroboration with ammonia borane: ready synthesis of ammonia-trialkylboranes and aminodialkylboranes.

Under open-flask conditions, ammonia borane hydroborates olefins in refluxing tetrahydrofuran. Unlike conventional hydroboration, the Lewis base (ammonia) is not dissociated from the boron center. Terminal alkenes selectively provide ammonia-trialkylborane complexes. On the other hand, internal alkenes afford aminodialkylboranes via a metal-free hydroboration-dehydrogenation sequence. Alkaline ...

متن کامل

Catalytic amine-borane dehydrogenation by a PCP-pincer palladium complex: a combined experimental and DFT analysis of the reaction mechanism.

Catalytic dehydrogenation of ammonia-borane (NH(3)·BH(3), AB) and dimethylamine borane (NHMe(2)·BH(3), DMAB) by the Pd(II) complex [((tBu)PCP)Pd(H(2)O)]PF(6) [(tBu)PCP = 2,6-C(6)H(3)(CH(2)P(t)Bu(2))(2)] leads to oligomerization and formation of spent fuels of general formula cyclo-[BH(2)-NR(2)](n) (n = 2,3; R = H, Me) as reaction byproducts, while one equivalent of H(2) is released per amine-bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 48  شماره 

صفحات  -

تاریخ انتشار 2013